TarDB: A miRNA Target Database in Plants.


TarDB employs cross-species conservation filter, degradome and sRNA-seq data to identify high-confidence miRNA targets in plants.



ppe-miR399f
Prunus persica

Species
UCAAAUAAGCAAAGCAGUCAUAGGGCUCCUCUUUCUUGGCAGGCACUGGUGACUGAUGCAGCUACAAAUGUACAAUCACUUUCAUUGACCUGCCAAAGAAGAGUUGCCCUACAAUUGCUUUGGCUUAAUGA

miRBase
UCAAA     -        CA      UC      C        -  ---CU     C  A    GCU 
     UAAGC AAAGCAGU  UAGGGC  CUCUUU UUGGCAGG CA     GGUGA UG UGCA   A
     ||||| ||||||||  ||||||  |||||| |||||||| ||     ||||| || ||||    
     AUUCG UUUCGUUA  AUCCCG  GAGAAG AACCGUCC GU     UCACU AC AUGU   A
-AGUA     G        AC      UU      A        A  UACUU     A  -    AAA 

Homologous Mature miRNAs   miRNAs are clustered by CD-HIT with sequence identity of >85% and word size of 5.

ppe-miR399k         UGCCAAAGAAGAGUUGCCCUA
ppe-miR399l         UGCCAAAGAAGAGUUGCCCUA
ppe-miR399j         UGCCAAAGAAGAGUUGCCCUA
ppe-miR399i         UGCCAAAGAAGAGUUGCCCUA
ppe-miR399h         UGCCAAAGAAGAGUUGCCCUA
ppe-miR399g         UGCCAAAGAAGAGUUGCCCUA
ppe-miR399f         UGCCAAAGAAGAGUUGCCCUA
ppe-miR399e         UGCCAAAGAAGAGUUGCCCUA
ppe-miR399d         UGCCAAAGAAGAGUUGCCCUA
ppe-miR399c         UGCCAAAGAAGAGUUGCCCUA
stu-miR399i-3p      UGCCAAAGGAGAGUUGCCCUA
mdm-miR399d         UGCCAAAGGAGAGUUGCCCUA
csi-miR399b-3p      UGCCAAAGGAGAGUUGCCCUA
sly-miR399          UGCCAAAGGAGAGUUGCCCUA
bra-miR399h         UGCCAAAGGAGAGUUGCCCU-
mdm-miR399k         UGCCAAAGGAGAGUUGCCCUU
mac-miR399a         -GCCAAAGGAGACUUGCCCUA
ptc-miR399e         CGCCAAAGGAGAGUUGCCCUC
ppe-miR399a         CGCCAAAGGAGAGUUGCCCUU
vvi-miR399i         CGCCAAAGGAGAGUUGCCCUG
tcc-miR399a         CGCCAAAGGAGAGUUGCCCUG
tcc-miR399e         CGCCAAAGGAGAAUUGCCCUG
csi-miR399f-3p      CGCCAAAGGAGAAUUGCCCUG
stu-miR399j-3p      CGCCAAAGGAGAGCUGCCCUG
stu-miR399k-3p      CGCCAAAGGAGAGCUGCCCUG
stu-miR399l-3p      CGCCAAAGGAGAGCUGCCCUG
stu-miR399m-3p      CGCCAAAGGAGAGCUGCCCUG
stu-miR399n-3p      CGCCAAAGGAGAGCUGCCCUG
stu-miR399o-3p      CGCCAAAGGAGAGCUGCCCUG
stu-miR399g-3p      CGCCAAAGGGGAGCUGCCCUA
                     *******  **  ******